超低噪声μModule降压型稳压器满足简单电源设计

发表时间: 2024-05-20 13:53:19 作者: 产品中心

  设计人员面临许多权衡取舍。需要高效率、大转换比、高功率和良好的热性能?选择。需要全部吗?妥协。一种折衷方案是采用带有线性稳压器的开关稳压器。虽然相对于仅使用开关稳压器的解决方案,这样做才能够清除输出噪声,但即使使用铁氧体磁珠、π和LC滤波器,也会保留很大一部分传导和辐射EMI。问题总是可以追溯到开关稳压器,其中快速dI/dt转换和高开关频率会导致高频EMI,但某些应用,尤其是那些具有大转换比的应用,需要开关稳压器。

  幸运的是,LTM4606 和 LTM4612 μModule 稳压器提供了开关稳压器的优势,同时保持了超低的传导和辐射噪声。这些μModule降压稳压器旨在实现高功率密度并满足EMC电磁兼容性)标准。集成的超低噪声特性允许两个器件通过 CISPR 22 辐射发射限制的 B 类,从而消除了昂贵的 EMI 设计和实验室测试。有关这两个部分的功能比较,请参见表 1。

  两款μModule稳压器均采用节约空间、扁平和热增强型15mm×15mm×2.8mm LGA封装,因此能放置在印刷电路板底部的未使用空间上,以实现高精度负载点调节。这对需要笨重冷却系统的线性稳压器来说是不可能的。几乎所有支持元件都集成在μModule封装中,因此布局设计相对简单,只需要几个输入和输出电容。

  为了获得更大的输出功率,两个器件可以很容易地并联,由于电流模式控制结构,输出电流自动共享。

  利用几个外部输入和输出电容器,LTM4612 可提供 4.5A 的DC输出电流,而 LTM4606 可提供 6A 的电流。LTM4612 的可编程输出可在 3.3V 至 15V 输入的 4.5V 至 36V 范围内精确调节;LTM4606 能够在一个 0.6V 至 5V 范围内产生 4.5V 至 28V 的电压。通过电流模式控制和优化的内部补偿,即使在面对显著的负载瞬变时,也能提供稳定的输出。

  图 1 示出了 LTM4606 的简化框图,其输入范围为 4.5V 至 28V 和 2.5V/6A 输出。图2显示了CCM模式下12V输入电压下的效率测试曲线kHz 开关频率下运行,在满负载时可实现约 900% 的效率。

  图1.LTM4606 的简化框图 (LTM4612 与此类似)。只需几个电容和电阻即可构建完整的宽输入范围稳压器。

  图3.几个电容器和电阻器完善了 18V–36V 输入、12V/4.5A 输出设计。

  两款器件均拥有非常良好的热性能和较大的输出负载电流。图 5 示出了 LTM4606 的热图像,具有 24V 输入和 3.3V 输出 (在 6A 负载电流下)。最高外壳温度仅为73.5°C,输出功率为20W。

  两者都包括许多内置功能,例如可控软启动、RUN 引脚控制、输出电压跟踪和裕量调节、PGOOD 指示器、频率调整和外部时钟同步。通过向 DRV 施加外部栅极驱动器电压,能更加进一步提高效率抄送引脚,尤其是在高 V 时在应用。可以启用非连续模式操作以提高轻负载效率。

  当稳压器以高频工作时,开关稳压器的传导输入和输出噪声(又称纹波)通常是一个问题,这在空间受限的应用中很常见。LTM4606 和 LTM4612 通过集成一个高频电感器来降低输入端的峰峰值纹波,如图 6 所示。V处的外部输入电容D和 V在引脚构成高频输入π滤波器。这有效地减少了模块和主输入总线之间的导电EMI耦合。

  由于大多数输入均方根电流流入电容C3,电压为VD引脚,C3应有充足的容量来处理RMS电流。建议使用 10μF 陶瓷电容器。为了有效衰减EMI,请将C3放置在尽可能靠近V的位置D针。陶瓷电容器C2主要决定纹波噪声衰减,因此能改变电容器值以满足多种的输入纹波要求。仅当输入源阻抗受到长电感引线或走线。

  由于这些μModule稳压器用于降压电路拓扑,因此由输出电感L和电容C形成的低通滤波器外一样能降低传导输出EMI。

  为了显示这些μModule稳压器的相对噪声衰减,将一个不具有低噪声特性的类似模块与LTM4606的输入和输出噪声作比较,如图7和图8所示。两个模块均在 5V 输入至 1.2V 输出(5A)和阻性负载下进行了测试。比较中使用相同的电路板布局和I/O电容器。根据结果得出,与图4606所示的类似模块相比,LTM10产生的输入和输出噪声要低得多,峰峰值输入噪声降低了近3×输出噪声,输出噪声降低了7×以上。

  图8.LTM4606 μModule 稳压器的输入和输出噪声明显低于图 7 中的稳压器。

  开关稳压器还会产生辐射EMI,这是由高效稳压器固有的高dI/dt信号引起的。输入π滤波器有助于限制由直接模块区域中的高 dI/dt 环路引起的辐射 EMI,但为了进一步衰减辐射 EMI,LTM4606 和 LTM4612 包括一个用于MOSFET的优化栅极驱动器和一个噪声消除网络。

  为了测试辐射EMI,在10米屏蔽室中测试了几种设置,如图10所示。为了确认和保证低基线辐射噪声,输入端使用线性直流电源,输出端采用阻性负载。通过电源直接向阻性负载提供直流电流来检查基线噪声。基线所示。图中有两条迹线,一条用于接收天线的垂直和水平方向。

  图 12 显示了没有集成低噪声特性的 μModule 降压稳压器 — 而不是 LTM4606 或 LTM4612 的峰值扫描结果。扫描根据结果得出,与基线噪声水平相比,μModule开关稳压器产生的噪声低于350MHz。此处的辐射EMI不符合CISPR 22(准峰值)辐射发射限制的B类。

  相比之下,图13显示了低噪声LTM4606模块的峰值扫描结果。为了确认和保证在不同工作条件下有足够的裕量达到准峰值限值,使用准峰值测量检查六个最高噪声点,如图13表所示。根据结果得出,该器件的裕量比CISPR 12(准峰值)辐射发射限值B级低22dBμV以上。

  LTM4606 和 LTM4612 μModule 稳压器提供了开关稳压器的所有高性能优势,但消除了噪声问题。超低噪声优化设计可产生辐射EMI性能,其裕量低于CISPR 22限制的B类,以简化噪声敏感环境中的应用。

  卓越的热性能进一步简化了设计,以此来实现高效率和紧凑的外形。扁平的 15mm × 15mm × 2.8mm 封装几乎包含所有支持元件——只需少量输入和输出电容就可以完成设计。多个μModule稳压器可轻松并联运行,以获得更大的输出功率。这一些器件的多功能性通过软启动、RUN 引脚控制、输出电压跟踪和裕量调节、PGOOD 指示器、频率调整和外部时钟同步等可选功能得到完善。